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SUMMARY

A three-dimensional, baroclinic and rotational benchmark for hydrostatic coastal ocean models is
suggested. The computational domain is a quadratic basin 200×200 km horizontally and 200 m deep.
The lateral boundaries are closed. Solutions to the problems are estimated with two different sigma
co-ordinate models, both for the diagnostic and the prognostic case. Grid- and time-converged results are
presented. For the transports, convergence within two significant digits is reported. Copyright © 2001
John Wiley & Sons, Ltd.
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1. BACKGROUND

Numerical regional scale ocean models are frequently used both in research and management
of the environment and ocean resources. Methods for quantitative assessment of three-
dimensional ocean model skills are still in their infancy, and qualitative assessment of model
outputs is common in the development of numerical ocean models. One exception seems to be
the assessment of tidal model skills, see Reference [1].

Several attempts have been made to develop methods for quality assessment of residual
model outputs from three-dimensional baroclinic coastal ocean models, e.g. comparison of
observations and model outputs. Examples are found in References [2,3]. Such attempts are
however difficult because what we often have is point observations whereas the model outputs
represent averages in both time and space. There is also a general lack of observations. In
comparison between observations and model outputs, it is also the quality of the whole model
system including the bathymetry, the initial fields, the boundary values and the forcing fields
that are assessed.
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For industrial fluid flow problems the establishment of a series of benchmarks has proved
to be very useful in the quality assessment of numerical codes [4]. To have at least a few agreed
upon solutions is of great value both in the development of new codes, and under the
modification of an existing code.

For prognostic ocean flow problems involving stratification, based on the full three-
dimensional equations normally used in ocean models, it is impossible to produce an analytical
solution. The one exception is the trivial solution, which we have only for cases with no initial
flow and no forcing.

At the symposium on assessment of coastal ocean model skills [5], several benchmarks with
corresponding solutions from five ocean models were presented [2]. The solutions differed too
much to be useful for more than a qualitative assessment. Even if the problems were simplified
compared to real world problems, they were apparently still too difficult for the codes to
produce a common solution. Another problem was that the subgrid scale parameterizations to
be used were not specified, and therefore the problems were not closed mathematically.

At the Ocean Modelling and Remote Sensing Laboratory at Rutgers University, a variety of
idealized test problems have been devised for evaluation of three-dimensional ocean circulation
models, however to our knowledge convergence in time and space to a solution produced with
more than one model is not yet demonstrated. One reason is probably that even if the cases
are idealized they are not trivial. Some of these problems are described in a recent book by
Haidvogel and Beckmann [6].

Over the last few years we have tried to establish converged solutions for problems involving
combinations of stratification, Coriolis effects, open boundary forcing, topographic effects and
wind forcing. We have however found this to be much more difficult than expected, and
understand that model outputs may vary as much as demonstrated in the MOMOP exercise
for instance.

In this paper we try to establish a converged solution for a test problem complex enough to
measure fundamental qualities of numerical schemes in ocean models, but otherwise as simple
as possible.

Such a solution should be well suited as a checkpoint in code development.
We want such a benchmark to feature at least the following properties:

� A simple set up.
� Stringent specification.
� Three-dimensional effects from non-linearities, stratification and rotation, and a fully

prognostic solution in time.
� Converged solutions from more than one model.

As a starting point we propose a simple three-dimensional, hydrostatic and baroclinic test
case, including effects of rotation, non-linearities, and a transport equation for density. The
depth is constant, and the computational domain is closed, density gradients in the beginning
are small, and the viscosities are chosen to be large and constant in both time and space.

We present a converged solution obtained by two ocean models that both apply the
Arakawa C-grid and the sigma co-ordinate system. Solutions for both the diagnostic case and
prognostic case are given. When implementing ocean models for new problems it is common
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practice to run the model in diagnostic mode first2, using a fixed density. A diagnostic solution
of a test problem is therefore of interest to check that the model approximates the equations
of continuity and momentum in a satisfactory way. The next natural step would be to check
that the prognostic solution is also in agreement with a converged reference solution. The
reference solution will of course be the solution obtained on the finest mesh with the shortest
time step.

One benchmark cannot answer all challenges of ocean modelling, so to get an overall
impression of the performance and accuracy of the numerical engine we will need additional
converged benchmarks each approaching other problematic areas such as turbulence,
bathymetry, irregular boundaries, open boundary conditions, resolution of fronts, etc.

2. THE MODEL PROBLEM

The prognostic variables describing our problem are the three velocity components U, V and
W, the pressure P and the density �. Using the Boussinesq approximation and the hydrostatic
approximation, we can write the standard momentum equations in Cartesian co-ordinates as
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where � is the surface elevation with respect to the zero level. The z-axis is positive upward,
with the origin at the resting sea surface. The horizontal diffusion terms are all written in the
form
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2 This may not be a correct use of the word ‘diagnostic’ since some of the quantities are evolving, but it is commonly
used to describe this type of run.
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We take the following parameters to be constant:

Coriolis parameter: f=1.3×10−4 s−1

Reference density: �0=1025.0 kg m−3

Effective vertical viscosity and diffusivity: KM=KH=0.01 m2 s−1

Effective horizontal viscosity and diffusivity: AM=AH=10000 m2 s−1

Acceleration due to gravity: g=9.806 m s−2

The subscript M refers to the momentum equations, and the subscript H to the equation for
density.

After transformation to the sigma co-ordinate system, details given in Blumberg and Mellor
[7], we can rewrite the equation system as
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The independent variables (x, y, z, t) are transformed to (x*, y*, �, t*) where

x*=x, y*=y, �=
z−�

H+�
, t*= t (11)

We have introduced the static depth H, which is the depth when the ocean is at rest, and the
total (dynamical) depth D=H+�. The vertical velocity � of this system is defined as
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To make comparison with other models not using the sigma co-ordinate system easier, a
number of terms from the co-ordinate transformation are left out. In this study �H/�xi=0, so
the effect of the terms related to bathymetry should be negligible. The terms related to
elevation are also generally assumed to be small, this may not be the case during the initial
transient phase.

We consequently use x, y and t in our notation since these are unchanged during the
transformation.

2.1. Geometry and boundary conditions

The model domain is the quadratic basin 0�x�Lx, 0�y�Ly. Lx=Ly=200000 m, with
vertical walls on all sides. The depth H is given as H(x, y)=200 m for all x and y. At the
bottom we have U=V=0, no flux and full slip conditions on the lateral boundaries. At the
free surface we have zero wind stress

KM

�Ub
�z

=0, z=� (13)

The bottom stress is given by the quadratic law
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2 +Vb
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n
(15)

Subscript ‘b’ denotes variables evaluated in the grid point nearest to the bottom. The Von
Karman constant �=0.4 and the bottom roughness length z0=0.01 m. These settings are
taken from Blumberg and Mellor [7].

2.2. Initial �alues

To describe the initial density field, we define the two metrics

rh=�(x−100000)2+ (y−100000)2 (16)

r�=1000z (17)

The density at t=0 is then given by the expressions

�h(x, y)=�c−�� tanh(rh/�r) (18)

�(x, y, z)=�h(x, y)(1− tanh(r�/�r))+�0 tanh(r�/�r) (19)
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where �c=1024 kg m−3, ��=4 kg m−3, �r=�3×50 000 m. At the surface this means a
circular core of density 1024 kg m−3 decreasing outward towards the boundaries to 1020
kg m−3. As we move towards the bottom this distribution gradually change towards the
reference density �0=1025 kg m−3.

Initially U and V are derived from the thermal wind relations

f
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The vertical velocity W is initially equal to 0. The initial free surface is determined from
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assuming �̂(0, 0)=0 m. The average �̂ is then computed from
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The initial velocity and density field are shown in Figure 1, where we also have introduced
�t=�−1000 kg m−3. Finally, an initial surface which averaged over the basin will be zero is
computed from �= �̃− �̂.

3. NUMERICAL METHODS

The numerical results presented in this work were obtained from the two ocean models we will
refer to as POM (the Princeton Ocean Model) and BOM (the Bergen Ocean Model). Detailed
information for POM can be found in Reference [7] and for BOM in Reference [8].

Both models are sigma co-ordinate ocean models, and also use the same spatial grid, the so
called Arakawa C-grid [9]. The main differences between the two models are the time stepping
scheme, the advection scheme and the method for estimating the surface elevation.

3.1. The Princeton ocean model

POM uses a mode splitting approach. The idea is to propagate the full depth integrated
momentum equations in time with the leapfrog scheme, using short time steps corresponding
to the CFL criterion for the external mode. This gives the elevation as output, which is then
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Figure 1. Initial density �t (left) and initial velocity (right) V (m s−1) for y=Ly/2. Horizontal units are
in km, vertical units are in metres.

used in the full three-dimensional equations and propagated with a time step that can be a
factor 20–30 times larger. The leapfrog strategy is used consequently, also for advection. We
chose to march forward with an external time step one fourth of the internal mode time step.

The version of the Princeton Ocean Model used is written in standard, single precision
Fortran 77, and can presently be found at:
http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/pom97.f

A discussion on the form of the equations used in POM can be found in Reference [10]. To
solve our model equations we did a few simple modifications in POM described in the
Appendix.

3.2. A short description of the explicit BOM

In the version of BOM applied a forward-backward type method is used to propagate the
momentum equations in time. The main idea is to do a forward Euler step on the full
three-dimensional momentum equations to predict the velocity, then a backward step on the
equation of continuity to find the elevation. The order of the calculation of the momentum
equations are switched each time step. The advection terms are approximated using a
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Lax–Wendroff discretization in time. Note that this version of BOM has no mode splitting,
and since all terms are propagated explicitly in time, the time step must obey the CFL criterion
related to the surface gravity waves. A more detailed description of the time stepping used in
the explicit version of BOM can be found in Reference [11].

We chose to run POM with an internal mode time step four times as large as the external
mode. POM is therefore approximating the elevation more accurately for the longest time steps
of the simulations.

3.3. Meshes

The simulations were run on a series of meshes labeled A–D, with the number of ocean cells
ranging from 900 to 345600. Details for each mesh are given in Table I. The vertical grid was
generated manually. The general idea is that we start with a constant spacing from �=0 to
�= −0.3, then �� increase linearly to �= −0.9 or −0.95, and then finally we place a couple
of points near the bottom. The idea is of course to resolve the surface and bottom gradients
as good as possible by using some extra grid points.

4. RESULTS

Two series of simulations were done, a diagnostic run with the initial density field held
constant in time, and one fully prognostic. Both series of simulations were run for 10 days with
up to five different three-dimensional time steps, and on four meshes. Normally, to obtain
realistic physics, horizontal viscosity and diffusivity vary with the resolution, but as we want
to evaluate the numerics of the model we use the same constant values for all grids. The
horizontal diffusivity is very ‘unphysical’, but this is just an effective remedy to make
something happen in finite time on a modest computer.

We expected the diagnostic run to reach a steady state solution, and that the two models
converged toward the same answer. The prognostic solution should show an exponentially
damped development in time.

4.1. Model outputs

In order to illustrate the convergence and accuracy of the two models, we have chosen to focus
on the time-series for the following quantities:

1. A kinetic energy norm, given by the expression

Table I. The grids.

DCBAMesh

Horizontal grid size 10 km20 km 5 km 2.5 km

345 600Number of cells 900 6000 44 800
(80×80×54)(10×10×9) (20×20×15) (40×40×28)
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All integrals are evaluated with a second-order accurate scheme.
2. The net transport through a section from (x, y)= (Lx/2, Ly/2) to (Lx, Ly/2).
3. The velocity component V in (X=3/4Lx, Y=1/2Ly, �= −0.2), obtained by linear interpo-

lation from the various meshes.

This is inspired by the hierarchical approach used by Røed et al. [2], and we believe that
these time-series should be fairly easy to extract from any model for comparison.

4.2. The diagnostic run

Tables II and III demonstrate that we for all measured quantities, after a simulation over 10
days, have two digits convergence in space for both POM and BOM, four digits convergence
in time for BOM, and finally five digits convergence in time for POM. The time step given for
POM is the time step for the three-dimensional part of the code.

The numbers also show that BOM converges toward a lower level for the measured
quantities than those for POM, indicating that BOM looses energy faster. For the time
stepping scheme, BOM uses a first-order forward–backward Euler type scheme, which is
known to be more diffusive in time than the filtered leapfrog approach of POM. As both

Table II. Results for the diagnostic run with BOM after 240 h.

BATime step (s) DC

Transport
240 0.588807E+05
120 0.588356E+05 0.602765E+05

0.657977E+050.602315E+050.588427E+0560
0.657846E+05 0.659234E+050.588173E+05 0.602010E+0530

15 0.588198E+05 0.603063E+05 0.657221E+05 0.659254E+05

Kinetic energy norm
240 0.491310E−03
120 0.462519E−030.491576E−03

60 0.491712E−03 0.462652E−03 0.455114E−03
30 0.455181E−03 0.452986E−030.462717E−030.491778E−03

0.462765E−03 0.455203E−0315 0.491815E−03 0.453022E−03

Velocity in (X, Y, Z)= (3/4Lx, 1/2Ly, −40 m) (�=−0.2)
0.427133E−01240
0.427071E−01120 0.397627E−01

60 0.427059E−01 0.397554E−01 0.393141E−01
0.393106E−01 0.391197E−010.427035E−01 0.397510E−0130
0.393063E−01 0.391181E−010.427029E−0115 0.397555E−01
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Table III. Results for the diagnostic run with POM after 240 h.

A B CTime step (s) D

Transport
0.612812E+05 0.626722E+05240
0.612910E+05 0.626818E+05120 0.684252E+05
0.612971E+05 0.626851E+05 0.684286E+05 0.685884E+0560
0.612993E+05 0.626868E+0530 0.684310E+05 0.685900E+05*
0.612995E+05 0.626875E+0515 0.684324E+05 0.685911E+05

Kinetic energy norm
0.516641E−03240 0.486124E−03
0.516643E−03 0.486126E−03120 0.478230E−03

60 0.516644E−03 0.486127E−03 0.478231E−03 0.475737E−03
30 0.516644E−03 0.486128E−03 0.478232E−03 0.475737E−03*

0.516643E−03 0.486128E−03 0.478232E−03 0.475737E−0315

Velocity in (X, Y, Z)= (3/4Lx, 1/2Ly, −40 m) (�=−0.2)
0.438242E−01 0.407967E−01240
0.438248E−01 0.407972E−01120 0.403473E−01

60 0.438251E−01 0.407974E−01 0.403476E−01 0.401535E−01
0.438252E−01 0.407976E−01 0.403477E−01 0.401535E−01*30
0.438253E−01 0.407976E−01 0.403478E−01 0.401536E−0115

* Indicates increased smoothing.

methods use second-order schemes for the advection of momentum, Lax–Wendroff (BOM)
and leapfrog (POM), it is therefore likely that the time stepping of the surface gravity waves
is the main cause of the slightly lower energy level of BOM.

We also observe that as we refine the mesh we get a higher decrease of energy in time. We
believe the reason for this is that the increased resolution made the models predict a larger
bottom velocity gradient. The time series in Figures 2 and 3 show the expected development
of the flow into a steady state solution. We observe that the solution oscillates in time, we
identify a fast mode with a period around 1 h and a slower mode with a period of
approximately 15 h. We expect the fast mode to be related to surface gravity waves. A simple
one-dimensional analysis gives periods for the first three modes to be 2.5, 1.254 and 0.836 h.

The slow oscillation with period around 15 h is likely to be an effect of the constant
baroclinic forcing. We believe the observed oscillation to be the numerical scheme trying to
adjust itself around an equilibrium state dictated by the constant density field, and therefore
shows oscillations of the same frequency as a horizontal sloshing of the density field would
give. If we use the formula �g �H=���/�gH to approximate the horizontal speed of the
adjustment oscillation of the solution, and further assume the horizontal density difference ��

to be of order 3–5 kg m−3, we find this speed to be in the interval [2.4, 3.3] m s−1. The
horizontal length-scale of our sea is 200 km so disturbances with a speed in this interval would
use between 16.8 and 23.1 h from the centre to the wall and back.
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Figure 2. Time-series of the diagnostic BOM, dt=15.

Figure 4 shows how the constant driving density field sets up a strong counter-clockwise
eddy near the surface, and a clockwise eddy near the bottom, giving a downwelling effect. We
observe that the eddy near the bottom increases in both strength and scale as we propagate the
solution in time.

4.3. The prognostic run

In this section we present results from the fully prognostic runs. Tables IV and V show that
for POM and BOM we have obtained two digits convergence both in time and space. We also
observe that POM and BOM predict the velocity in our chosen location, after a 10-day long
simulation, with three digits agreement. In Figures 5 and 6 we observe the expected exponen-
tial decrease in the measured quantities. We can also identify oscillations of period �1 h due

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 639–657
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Figure 3. Time-series of the diagnostic POM, dt=15.

to the fast surface gravity waves, and very weak oscillations of period 15 h. Figure 7 shows the
expected development of the velocity component V at y=Ly/2. Small velocities near the
bottom due to friction, very small effects of friction near lateral boundaries, and the field loose
vertical structure as the time passes, and the density is fully horizontally mixed (see Figure 8).

4.4. Limitations

A well known weak point with the Arakawa C-grid is the necessary approximation of U in V
points and vice versa. We have chosen a linear interpolation for this, and hence introduce an
interpolation error of second-order.

Both models apply the sigma co-ordinate system in the vertical, and this introduces extra
terms in the full equations, which we have chosen to neglect. For our flat bottom case these
terms should have a small or no effect.
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Figure 4. Diagnostic run: velocity V(x, z) for y=Ly/2. BOM (left) and the difference VPOM−VBOM

(right) after 1, 2, 5 and 10 days. Horizontal units are in km, vertical units in metres.
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Table IV. Results for the prognostic run with POM after 240 h.

A B CTime step (s) D

Transport
0.618055E+04240 0.605921E+04
0.619588E+04 0.607441E+04 0.599881E+04120
0.620527E+04 0.608100E+0460 0.600562E+04 0.599777E+04

30 0.620970E+04 0.608412E+04 0.600916E+04 0.600050E+04*
0.621174E+04 0.608595E+0415 0.601121E+04 0.600337E+04

Kinetic energy norm
0.596424E−07240 0.576987E−07

120 0.600162E−07 0.580367E−07 0.566779E−07
0.602108E−07 0.582106E−0760 0.568516E−07 0.566862E−07
0.603085E−07 0.582964E−07 0.569400E−07 0.567696E−07*30
0.603600E−07 0.583474E−07 0.569899E−07 0.568246E−0715

Velocity in (X, Y, Z)= (3/4Lx, 1/2Ly, −40 m) (�=−0.2)
0.347990E−03 0.339993E−03240
0.349095E−03 0.341052E−03120 0.337709E−03

60 0.349850E−03 0.341603E−03 0.338247E−03 0.338036E−03
30 0.350121E−03 0.341712E−03 0.338328E−03 0.338083E−03*

0.350667E−03 0.342338E−0315 0.338696E−03 0.339045E−03

* Indicates increased smoothing.

Table V. Results for the prognostic run with BOM after 240 h.

A B CTime step (s) D

Transport
240 0.618627E+04

0.618562E+04 0.607086E+04120
0.620094E+04 0.607084E+04 0.599923E+0460
0.620986E+04 0.607120E+0430 0.600312E+04 0.599285E+04

15 0.620256E+04 0.607369E+04 0.600142E+04 0.598745E+04

Kinetic energy norm
0.598842E−07240

120 0.599265E−07 0.580594E−07
60 0.601572E−07 0.580716E−07 0.567578E−07

0.603126E−07 0.580991E−0730 0.568322E−07 0.566529E−07
0.601795E−07 0.581519E−07 0.567988E−07 0.565611E−0715

Velocity in(X, Y, Z)= (3/4Lx, 1/2Ly, −40 m) (�=−0.2)
0.348680E−03240
0.348455E−03 0.341110E−03120
0.349753E−03 0.341135E−0360 0.338058E−03

30 0.350160E−03 0.341214E−03 0.338422E−03 0.336934E−03
15 0.350816E−03 0.341923E−03 0.338890E−03 0.339348E−03
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Figure 5. Time-series of the prognostic BOM, dt=15.

On the second finest time step on mesh D using POM, it was necessary to increase the
smoothing parameter of the asselin filter to get a stable run. The parameter SMOTH usually
was 0.05, the entries marked * were found with SMOTH=0.4. The reason for this instability
is not clear, possibly a computational mode.

5. CONCLUSIONS

We have proposed a prognostic, three-dimensional baroclinic test case for numerical ocean
models. The domain is a closed quadratic basin with a flat bottom, with no wind forcing. The
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Figure 6. Time-series of the prognostic POM, dt=15.

system is released from an initial geostrophic balance, with a symmetric density distribution
with light water along the boundaries.

The test case is meant to focus on the accuracy and convergence of the basic numerical
engine of a numerical ocean model, in particular three-dimensional effects of rotation and the
density field. The geometry is chosen because of its simplicity, and the initial conditions should
give a good indication on the quality of the response to a realistic shelf problem.

We have also presented grid-converged results within two digits, obtained with two sigma
co-ordinate ocean models.

Despite the case being simplistic it has already been used to reveal and correct weaknesses
in the numerical schemes of both models. The two models did not converge to the presented
solutions before they were altered. In our opinion this test case would therefore be useful to
test other ocean models.
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Figure 7. Prognostic run: velocity V(x, z) for y=Ly/2. BOM (left) and the difference VPOM−VBOM

(right) after 1, 2, 5 and 10 days. Horizontal units are in km, vertical units are in metres.
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Figure 8. Density �t in y=Ly/2 for BOM (left) and the difference �t−POM−�t−BOM (right) after 1, 2,
5 and 10 days. Horizontal units are in km, vertical units are in metres.
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APPENDIX A. MODIFICATIONS TO pom97.f

To solve our model equations we modified the following routines of the code:

� main program: solve for density instead of temperature and salinity.
� advave, advct:

1. Make diffusion terms agree with the basic Equations (7)–(10).
2. Force diffusive and convective fluxes to be zero on land points.
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